

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 2208-2212

One-pot synthesis of α -aminophosphonates catalyzed by antimony trichloride adsorbed on alumina

Ambica^a, Satish Kumar^a, Subhash C. Taneja^b, Maninder S. Hundal^c, Kamal K. Kapoor^{a,*}

^a Department of Chemistry, University of Jammu, Jammu 180 006, India

^b Bio-organic Chemistry Division, Indian Institute of Integrative Medicines, Canal Road, Jammu 180 001, India ^c Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India

> Received 1 January 2008; revised 6 February 2008; accepted 11 February 2008 Available online 13 February 2008

Abstract

SbCl₃ adsorbed on Al₂O₃ is found to be an efficient and recyclable catalyst in promoting three-component coupling reactions of aldehydes (aromatic and aliphatic), amines (aryl amines, aliphatic amines and esters of *S*- α -amino acids) and dialkylphosphites to afford the corresponding α -aminophosphonates in high yields. The ethyl ester of *S*-phenylalanine was observed to yield the corresponding α -aminophosphonate with *S*,*S*-diastereoisomer formed in dominance over the *S*,*R*-diastereoisomer. © 2008 Elsevier Ltd. All rights reserved.

Keywords: SbCl₃/Al₂O₃; α-Amino acid; α-Aminophosphonate; Solid supported reagents; Recyclability

 α -Aminophosphonates have been the focus of attention in recent years because of their structural analogy to the corresponding α -amino acids as well as heterocyclic phosphonates¹ and ω -aminophosphonates.² They act as peptide mimics,³ antibiotics, herbicides,⁴ pharmacological agents⁵ and enzyme inhibitors.⁶ In addition, α -aminophosphonates have broad application due to their antifungal⁷ and antibacterial activities.⁸ There are two main pathways for the synthesis of α -aminophosphonates:

(a) Kabachnik–Fields three-component reaction in which an amine, an aldehyde and a di- or trialkylphosphite are reacted in a single-pot in the presence of a catalyst such as LiClO₄,^{9,10} TaCl₅–SiO₂,¹¹ InCl₃,¹² Sc(O₃SOC₁₂H₂₅)₃,¹³ SiO₂/NH₄HCO₃,¹⁴ lanthanide–triflate,¹⁵ CF₃CO₂H,¹⁶ Mg(ClO₄)₂,¹⁷ TiCl₄,¹⁸ PhMe₃NCl¹⁹ and In(OTf)₃.²⁰

(b) *Pudovik reaction*, where dialkylphosphites are added to imines using either a base^{21–23} or a Lewis acid such as AlCl₃,²⁴ Me₂AlCl,²⁵ BF₃,²⁶ SnCl₄,²⁷ *t*-PcAlCl²⁸ and ZrCl₄.²⁹

However, in spite of their potential utility, these methods typically suffer from one or more disadvantages such as high cost, use of a stoichiometric amount of catalyst, moisture sensitivity, specialized handling, tedious workup and non-recyclability of the catalyst. The use of reagents impregnated on inorganic supports^{11,14,30} offers advantages in preparative procedures, such as simple work-up, easy handling, mild reaction conditions, cleaner products, enhanced selectivity, reduction of by-products and produced waste, much improved reaction rates and recyclability of the catalyst. In continuation of our ongoing studies^{30b,31} into the applications of SbCl₃ impregnated on inorganic supports as a post transitional Lewis acid in organic synthesis, we wished to explore the usage of $SbCl_3/Al_2O_3$ for the synthesis of a-aminophosphonates and α -aminophosphonates of the esters of α -amino acids (S-phenylglycine and S-phenylalanine).

^{*} Corresponding author. Tel.: +91 191 245 3969; fax: +91 191 245 3079/ 243 1365.

E-mail address: k2kapoor@yahoo.com (K. K. Kapoor).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.02.047

Scheme 1. Preparation of α-aminophosphonate 1a in the presence of SbCl₃/Al₂O₃.

A mixture of benzaldehyde (10 mmol), aniline (10 mmol) and dimethylphosphite (12 mmol) in acetonitrile (65 mL) was stirred at room temperature in the presence of 5 mol % of SbCl₃/Al₂O₃ and 5 Å molecular sieves (Scheme 1) to yield the expected α -aminophosphonate **1a**¹⁰ in 3 h.

The above experiment was carried out with 5 mol % of SbCl₃ and it was found that the reaction took longer (5 h) to reach completion. No product formation was observed in the presence of Al_2O_3 even after 8 h of stirring at room temperature. It seems that Al_2O_3 acts only as a support for the reaction. It was considered appropriate to employ SbCl₃/Al₂O₃ in future studies in view of the recyclability of SbCl₃ adsorbed on an inorganic support (hydroxyapatite, HAP).^{30b} In order to investigate the recyclability, SbCl₃/Al₂O₃ was recovered, activated at 110 °C in an oven and reused ten times, successively, for the reaction of benzaldehyde, aniline and dimethylphosphite; no significant decrease in its activity was noticed (Fig. 1).

A range of aldehydes underwent reactions with aromatic and aliphatic amines including a secondary amine (entry 16) to give the corresponding α -aminophosphonates. The results are summarized in Table 1.

We next focused our attention on the esters of α -amino acids (Scheme 2). For the ethyl esters of S-phenylglycine and S-phenylalanine, the formation of 9:1 and 3:2 mixtures of diastereoisomers was evident upon analyzing the ¹H NMR spectra of the viscous oils obtained by column chromatography over silica gel. Interestingly, in all the cases, the major diastereoisomer crystallized from the viscous oil on cooling in a refrigerator. The crystalline product 1z obtained in the reaction between *S*-phenylalanine ethyl ester and *p*-chlorobenzaldehyde was assigned the *S*,*S*-configuration on the basis of X-ray analysis.^{32c} (Fig. 2).

The structure is stabilized by two hydrogen bonds (Fig. 3) between the hydrogen attached to the amine nitrogen (N1) and the phosphonate oxygen (O1ⁱ) belonging to the symmetry related molecule (where i = -x + 1, -y, -z). The N1-H1...O1ⁱ distance is 2.053(4) Å and the N1-H1...O1 angle is 168.1(2)°. The amine hydrogen of this symmetry related molecule forms an identical H-bond with molecule (x, y, z) to give a tight H-bonded dimer (Fig. 3).

In summary, $SbCl_3/Al_2O_3$ is found to be an efficient catalyst for the synthesis of α -aminophosphonates. $SbCl_3/Al_2O_3$ is stable, easy to handle, recoverable by simple filtration and is recyclable.

General procedure: A mixture of amine (10.0 mmol), aldehyde (10.0 mmol), dialkylphosphite (12.0 mmol), 5 Å molecular sieves (200 mg) and SbCl₃/Al₂O₃³¹ (3.1 g, 5 mol % with respect to the amount of SbCl₃) in CH₃CN (65 mL) was stirred at room temperature for the appropriate amount of time (Table 1). After completion of the reaction (TLC), CH₃CN was distilled off under reduced pressure and the residue was diluted with EtOAc (70 mL) and filtered to remove solid materials. The filtrate was washed with water (2 × 20 mL) and brine (20 mL). The organic layer was dried over anhydrous Na₂SO₄ and con-

Fig. 1. Results of recycling the catalyst.

Table 1	
One-pot synthesis of α -aminophosphonates catalyzed by St	oCl ₃ /Al ₂ O ₃

Entry	Aldehyde	Amine	Phosphite ^a	Product ^b	Time (h)	Yield (%)
1	Benzaldehyde	Aniline	DMP	1a ¹⁰	3	90
2	Benzaldehyde	Aniline	DEP	1b ¹⁷	3	91
3	p-Tolualdehyde	Aniline	DEP	1c	3.5	90
4	3,4,5-Trimethoxybenzaldehyde	Aniline	DEP	1d	4	82
5	p-Nitrobenzaldehyde	Benzylamine	DEP	1e	2.5	83
6	trans-Cinnamaldehyde	Aniline	DEP	1f	5	75
7	Benzaldehyde	Benzylamine	DEP	1g	3	90
8	p-Anisaldehyde	Aniline	DEP	$1h^{17}$	3.5	92
9	p-Anisaldehyde	<i>p</i> -Toluidine	DMP	1i	3.5	84
10	<i>p</i> -Tolualdehyde	<i>p</i> -Toluidine	DEP	1j	3.5	86
11	Butyraldehyde	Aniline	DMP	1k	7.0	49
12	p-Tolualdehyde	Aniline	DMP	11	4.5	88
13	p-Tolualdehyde	Benzylamine	DMP	1m	4.5	83
14	p-Anisaldehyde	2-Aminopyridine	DEP	1n	5.0	77
15	m-Anisaldehyde	Aniline	DMP	10	3.0	89
16	p-Chlorobenzaldehyde	Piperidine	DMP	CI POMe N 1p	4.0	84
17	o-Chlorobenzaldehyde	Aniline	DMP	1q	3.0	92
18	o-Chlorobenzaldehyde	Aniline	DEP	1r	3.5	90
19	p-Chlorobenzaldehyde	Aniline	DMP	1s ¹⁷	2.5	91
20	p-Chlorobenzaldehyde	Aniline	DEP	1t	2.5	91
21	<i>p</i> -Tolualdehyde	2-Aminobenzothiazole	DMP	1u	5	65
22	Benzaldehyde	Ethyl ester of S-phenylglycine ^c	DMP	1v ^d	4.5	74
23	p-Chlorobenzaldehyde	Ethyl ester of S-phenylglycine ^c	DMP	$1\mathbf{w}^{d}$	5	78
24	p-Anisaldehyde	Ethyl ester of S-phenylglycine ^c	DMP	1x ^d	4.5	73
25	Benzaldehyde	Ethyl ester of S-phenylalanine ^c	DMP	1y ^e	5.5	68
26	p-Chlorobenzaldehyde	Ethyl ester of S- phenylalanine ^c	DMP	1z ^e	5	65

^a DMP = dimethyl phosphite and DEP = diethyl phosphite.

^b All new compounds gave satisfactory spectral data (¹H and ¹³C NMR, MS).

^c Reactions (entries 22–26) were carried out at reflux.

^d 9:1 mixture of diastereoisomers as calculated from the ¹H NMR spectrum of the crude product.

^e 3:2 mixture of diastereoisomers as calculated from the ¹H NMR spectrum of the crude product.

centrated under reduced pressure to afford a crude product, which on passing through a silica (60–120 mesh) column using EtOAc–petroleum ether as an eluent gave the pure α -aminophosphonates. The structures of the products were established by spectroscopy.

For the esters of α -amino acids: To a solution of 10.0 mmol of the ester of the α -amino acid hydrochloride in 80 mL of water at 0 °C was added aqueous ammonia solution (25% NH₃) dropwise with stirring until the solu-

tion became neutral. The mixture was extracted with CHCl₃ (4 × 30 mL) and the combined CHCl₃ layers were washed with brine (40 mL), dried over anhydrous Na₂SO₄ and the solvent evaporated under reduced pressure to afford the ester of the α -amino acid, which was converted to the corresponding aminophosphonates following the general procedure.

With α -amino acid esters, better yields were obtained using 1.1 equiv of the aldehyde with respect to the amount

Scheme 2. α-Aminophosphonates of the esters of α-amino acids in the presence of SbCl₃/Al₂O₃.

Fig. 2. ORTEP drawing of 1z.

Fig. 3. H-bonding between phosphonate oxygen (O1) and the amino hydrogen (H1) attached to nitrogen (N1). Hydrogen atoms attached to carbon atoms are not shown.

of ester. MeOH–CHCl₃ was used as an eluent for column chromatography of the products in these cases.

Acknowledgement

The authors are thankful to DST, Govt. of India, New Delhi for Project Grant No. SR/S1/OC-36/2004.

References and notes

1. Moonen, K.; Laureyn, I.; Stevens, C. V. Chem. Rev. 2004, 104, 6177.

- Laureyn, I.; Stevens, C. V.; Soroka, M.; Malyse, P. Arkivoc 2003, iv, 102.
- Kafarski, P.; Lejzak, B. Phosphorous, Sulphur, Silicon Relat. Elem. 1991, 63, 193.
- 4. Barder, A. Aldrichim. Acta 1988, 21, 15.
- (a) Atherton, F. R.; Hassal, C. H.; Lambert, R. W. J. Med. Chem. 1986, 29, 29; (b) Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. J. Chem. Soc., Perkin Trans. 1 1984, 2845.
- Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. J. Med. Chem. 1989, 32, 1652.
- Maier, L.; Diel, P. J. Phosphorous, Sulphur, Silicon Relat. Elem. 1991, 57, 57.
- (a) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hasall, C. H.; Holmes, S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. *Nature* 1978, 272, 56; (b) Pratt, R. F. *Science* 1989, 246, 917.
- 9. Heydari, A.; Karimian, A.; Ipaktschi, J. Tetrahedron Lett. 1998, 39, 6729.
- 10. Azizi, N.; Saidi, M. R. Eur. J. Org. Chem. 2003, 4630.
- 11. Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narsihmulu, Ch. *Tetrahedron Lett.* **2001**, *42*, 5561.
- 12. Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141.
- 13. Manabe, K.; Kobayashi, S. J. Chem. Soc., Chem. Commun. 2000, 669.
- 14. Kaboudin, B.; Rahmani, A. Synthesis 2003, 2705.
- 15. Lee, S.; Park, J. H.; Kang, J.; Lee, J. K. J. Chem. Soc., Chem. Commun. 2001, 1698.
- 16. Akiyama, T.; Sanada, M.; Fuchibe, K. Synlett 2003, 1463.
- 17. Bhagat, S.; Chakraborty, A. K. J. Org. Chem. 2007, 72, 1263.
- Reddy, Y. T.; Reddy, P. N.; Kumar, B. S.; Rajput, P.; Sreenivasulu, N.; Rajitha, B. Phosphorous, Sulphur, Silicon Relat. Elem. 2007, 182, 161.
- 19. Heydari, A.; Arefi, A. Catal. Commun. 2007, 8, 1023.
- Gosh, R.; Maiti, S.; Chakraborty, A.; Maiti, D. K. J. Mol. Catal. A: Chem. 2004, 210, 53.
- Yager, K. M.; Taylor, C. M.; Smith, A. B. J. Am. Chem. Soc. 1994, 116, 9377.
- Simoni, D.; Invidiata, F. P.; Manferdini, M.; Lampronti, I.; Rondanin, R.; Roberti, M.; Pollini, G. P. *Tetrahedron Lett.* 1998, *39*, 7615.
- 23. Klepacz, A.; Zwierzak, A. Tetrahedron Lett. 2002, 43, 1079.
- 24. Manjula, A.; Rao, V.; Neelakanthan, P. Synth. Commun. 2003, 33, 2963.
- 25. Doye, S. Synlett 2004, 1653.
- Schlemminger, I.; Willecke, A.; Maison, W.; Koch, R.; Lutzen, A.; Martens, J. J. Chem. Soc., Perkin Trans. 1 2001, 2804.
- 27. Laschat, S.; Kunz, H. Synthesis 1992, 90.
- 28. Matveeva, E. D.; Zefirov, N. S. Russ. J. Org. Chem. 2006, 42, 1237.
- Yadav, J. S.; Reddy, B. V. S.; Raj, K. S.; Reddy, B.; Prasad, A. R. Synthesis 2001, 2277.
- (a) Yadav, V. K.; Kapoor, K. K. *Tetrahedron* **1996**, *52*, 3659; (b) Mahajan, D.; Ganai, B. A.; Sharma, R. L.; Kapoor, K. K. *Tetrahedron Lett.* **2006**, *47*, 7919.
- 31. Ganai, B. A.; Kumar, S.; Andotra, C. S.; Kapoor, K. K. Can. J. Chem. 2006, 84, 433.
- 32. The physical and spectroscopic data of the selected compounds is as follows:

(a) Compound **1u**: Yellowish, crystalline; mp: 174–175 °C. IR, v_{max}/cm^{-1} (KBr): 3217, 3016, 1596, 1538, 1443, 1250. ¹H NMR: (CDCl₃, 300 MHz) δ 2.31 (s, 3H, *CH*₃), 3.55 (d, 3H, ³J_{HP} = 10.5 Hz, OC*H*₃), 3.81 (d, 3H, ³J_{HP} = 10.8 Hz, OC*H*₃), 5.58 (d, 1H, ²J_{HP} = 21.9 Hz, C*H*), 7.02–7.22 (m, 4H, Ar-*H*), 7.33–7.54 (m, 4H, Ar-*H*). ¹³C NMR: (CDCl₃, 75 MHz) δ 21.7, 54.6, 56.6, 119.8, 121.2, 122.3, 126.3, 127.6, 128.8, 129.9, 131.7, 132.4, 138.6, 152.5, 166.4. Anal. Calcd for C₁₇H₁₉N₂O₃PS (362.384): C, 56.35: H, 5.28: N, 7.73: S, 8.85. Found: C, 56.35: H, 5.29: N, 7.72: S, 8.84. MS (ESI) *m/z*: 362.9 (M+H)⁺. (b) Compound **1v**: White, crystalline; mp: 76–78 °C. IR, v_{max}/cm^{-1} (KBr): 3267, 2954, 1738, 1599, 1490, 1454, 1243. ¹H NMR: (CDCl₃, 200 MHz) δ 1.15 (t, 3H, ³J_{HH} = 7.1 Hz, CH₃), 3.62 (d, 3H, ³J_{HP} = 11.5 Hz, OCH₃), 3.75 (d, 3H, ³J_{HP} = 10.5 Hz, OCH₃),

4.10–4.31 (m, 4H, CHCO₂Et, CHPO₃Me₂, CH₂), 7.27–7.41 (m, 10H, Ar-*H*). ¹³C NMR: (CDCl₃, 50 MHz) δ 13.2, 53.1, 56.5, 59.3, 60.3, 61.9, 126.3, 126.7, 127.0, 127.3, 127.5, 133.5, 133.7, 136.2, 171.8. Anal. Calcd for C₁₉H₂₄NO₅P (377.371): C, 60.47: H, 6.41: N, 3.71. Found: C, 60.47: H, 6.40: N, 3.72.

MS (ESI) *m/z*: 378.2 (M+H)⁺.

(c) Compound **1z**: White, crystalline mp: 65 °C; $[\alpha]_{20}^{D0}$ 0, *c* 1 in chloroform X-ray crystallographic details: $C_{20}H_{25}CINO_5P$, formula weight = 425.83, $\lambda = 0.71069$ Å, triclinic, $P\overline{1}$ (number 2), a = 10.256(5) Å, b = 10.583(5) Å, c = 11.097(5) Å, $\alpha = 81.940(5)^{\circ}$, $\beta = 78.030(5)^{\circ}$, $\gamma = 67.740(5)^{\circ}$, V = 1087.9(9) Å³, Z = 2, $\rho_{calc} = 1.300 \text{ Mg/m}^3$, $\mu = 0.279 \text{ mm}^{-1}$, F(000) = 448, reflections collected = 4308, full-matrix least-squares on F^2 , parameters = 253, $R_1 = 0.0807$, $wR_2 = 0.1987$, largest difference in peak and hole (0.475 and -0.336 e Å⁻³). CCDC number: 662851; IR, v_{max}/cm^{-1} (KBr): 3259, 2959, 1736, 1597, 1492, 1458, 1247. ¹H NMR: (CDCl₃, 200 MHz) δ 1.20 (t, 3H, ³ $_{JHH} = 7.1$ Hz, CH_3), 2.79 (dd, 1H, $J_{HH} = 13.5$ Hz, 8.8 Hz, CH_aH_bPh), 2.98 (dd, 1H, $J_{HH} = 13.5$ Hz, 5.2 Hz, CH_aH_bPh), 3.22 (dd, 1H, ³ $_{JHH} = 8.7$ Hz, 5.3 Hz, $CHCO_2Et$), 3.61 (d, 3H,

 ${}^{3}J_{\text{HP}} = 10.5 \text{ Hz}, \text{ OCH}_{3}$), 3.69 (d, 3H, ${}^{3}J_{\text{HP}} = 10.6 \text{ Hz}, \text{ OCH}_{3}$), 4.10 (d, 1H, ${}^{2}J_{\text{HP}} = 18.2 \text{ Hz}, \text{ CHPO}_{3}\text{Me}_{2}$), 4.13 (q, 2H, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}, \text{ CH}_{2}\text{CH}_{3}$), 6.95–7.27 (m, 9H, Ar-*H*). ${}^{13}\text{C}$ NMR: (CDCl₃, 50 MHz) δ 14.3, 39.7, 53.8, 57.7, 58.9, 59.9, 61.0, 126.9, 128.4, 128.7, 129.5, 130.0, 133.1, 133.9, 137.3, 173.6. Anal. Calcd for C₂₀H₂₅ClNO₅P (425.843): C, 56.41: H, 5.92: N, 3.29. Found: C, 56.42: H, 5.93: N, 3.28. MS (ESI) *m/z*: 428.1 (30) and 426.1 (100) (M+H)⁺.

(L51) $m_{l}2.428.1 (56)$ and 426.1 (160) (W111). 2nd diastereoisomer: Viscous oil; [z]_D²⁰ -23.54, c 1 in chloroform; IR, v_{max}/cm^{-1} (neat): 3259, 2959, 1736, 1597, 1492, 1458, 1247. ¹H NMR: (CDCl₃, 200 MHz) δ 1.02 (t, 3H, ³J_{HH} = 7.1 Hz, CH₃), 2.87 (m, 2H, CH₂Ph), 3.48 (d, 3H, ³J_{HP} = 10.5 Hz, OCH₃), 3.56 (dd, 1H, ³J_{HH} = 5.9 Hz, 7.8 Hz, CHCO₂Et), 3.60 (d, 3H, ³J_{HP} = 10.6 Hz, OCH₃), 3.87 (q, 2H, ³J_{HH} = 7.1 Hz, CH₂CH₃), 3.88 (d, 1H, ²J_{HP} = 19.7 Hz, CHPO₃Me₂), 6.96–7.27 (m, 9H, Ar-H). ¹³C NMR: (CDCl₃, 50 MHz) δ 13.9, 39.2, 53.6, 58.8, 59.8, 60.9, 61.6, 126.9, 128.4, 128.6, 129.5, 129.9, 133.1, 133.9, 137.2, 173.6. Anal. Calcd for C₂₀H₂₅ClNO₅P (425.843): C, 56.41: H, 5.92: N, 3.29. Found: C, 56.42: H, 5.93: N, 3.28. MS (ESI) m/z: 428.1 (30) and 426.1 (100) (M+H)⁺.